Search results for "Planar vector fields"

showing 6 items of 6 documents

Plane foliations with a saddle singularity

2012

Abstract We study the set of planar vector fields with a unique singularity of hyperbolic saddle type. We found conditions to assure that a such vector field is topologically equivalent to a linear saddle. Furthermore, we describe the plane foliations associated to these vector fields. Such a foliation can be split in two subfoliations. One without restriction and another one that is topologically characterized by means of trees.

Planar vector fieldsSingular foliationsPlane (geometry)Mathematical analysisPlanar vector fieldsType (model theory)SingularityFoliation (geology)Vector fieldGeometry and TopologyTopological conjugacySaddleMathematicsSaddle singularityTopology and its Applications
researchProduct

Abelian integrals and limit cycles

2006

Abstract The paper deals with generic perturbations from a Hamiltonian planar vector field and more precisely with the number and bifurcation pattern of the limit cycles. In this paper we show that near a 2-saddle cycle, the number of limit cycles produced in unfoldings with one unbroken connection, can exceed the number of zeros of the related Abelian integral, even if the latter represents a stable elementary catastrophe. We however also show that in general, finite codimension of the Abelian integral leads to a finite upper bound on the local cyclicity. In the treatment, we introduce the notion of simple asymptotic scale deformation.

Abelian integralPure mathematicsApplied MathematicsMathematical analysisAbelian integralTwo-saddle cyclePlanar vector fieldsAsymptotic scale deformationCodimensionLimit cycleUpper and lower boundsPlanar vector fieldsymbols.namesakeLimit cyclesymbolsHamiltonian perturbationAbelian groupHamiltonian (quantum mechanics)BifurcationAnalysisMathematicsJournal of Differential Equations
researchProduct

Melnikov functions and Bautin ideal

2001

The computation of the number of limit cycles which appear in an analytic unfolding of planar vector fields is related to the decomposition of the displacement function of this unfolding in an ideal of functions in the parameter space, called the Ideal of Bautin. On the other hand, the asymptotic of the displacement function, for 1-parameter unfoldings of hamiltonian vector fields is given by Melnikov functions which are defined as the coefficients of Taylor expansion in the parameter. It is interesting to compare these two notions and to study if the general estimations of the number of limit cycles in terms of the Bautin ideal could be reduced to the computations of Melnikov functions for…

Applied MathematicsComputationMathematical analysisPlanar vector fieldsParameter spacesymbols.namesakeDisplacement functionTaylor seriessymbolsDiscrete Mathematics and CombinatoricsVector fieldHamiltonian (quantum mechanics)Melnikov methodMathematicsQualitative Theory of Dynamical Systems
researchProduct

Generic unfoldings with the same bifurcation diagram which are not (C0, C0)— equivalent

1997

Discrete mathematicsApplied MathematicsPlanar vector fieldsBifurcation diagramAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields

1986

Consider a fami ly of vector fCelds x~ on the plane. This fami ly depends on a parameter ~ ~ /R A, for some A ~ /~, and is supposed to be 0 ~ in (m,~) 6 /i~ 2X /~A. Suppose that for ~ = O, the vector f i e l d X o has a separatrix loop. This means that X o has an hyperbol ic saddle point s o and that one of the stable separatr ix of 8 o coincides with one of the unstable one. The union of th is curve and s o is the loop ?. A return map is defined on one side of r .

SeparatrixGeneral MathematicsSaddle pointMathematical analysisPerturbation (astronomy)Planar vector fieldsAtomic physicsMathematicsBoletim da Sociedade Brasileira de Matemática
researchProduct

Multiple Canard Cycles in Generalized Liénard Equations

2001

AbstractThe paper treats multiple limit cycle bifurcations in singular perturbation problems of planar vector fields. The results deal with any number of parameters. Proofs are based on the techniques introduced in “Canard Cycles and Center Manifolds” (F. Dumortier and R. Roussarie, 1996, Mem. Amer. Math. Soc., 121). The presentation is limited to generalized Liénard equations εx+α(x, c)x+β(x, c)=0.

Singular perturbationPure mathematicsApplied MathematicsLimit cycleMathematical analysisPlanar vector fieldsCenter (group theory)Mathematical proofAnalysisMathematicsJournal of Differential Equations
researchProduct